Travail d'une force (p. 184)

1 Le bloc de pierre est soumis à son poids, \vec{P} , à la force exercée par les Égyptiens, \vec{F} , et à la réaction verticale exercée par la rampe, \vec{R} .

Dans le texte, il est dit que les « rampes sont enduites de boues humides »; on peut donc négliger les frottements.

Le bloc de pierre étant immobile, son énergie cinétique est nulle.

Entre les deux positions, le bloc de pierre a changé d'altitude, son énergie potentielle de pesanteur a

Cette variation est la conséquence de l'action des forces exercées par les ouvriers.

3 a. La force \overrightarrow{A} permet de tirer le bloc vers le bas de la rampe; la force \vec{B} permet de tirer le bloc vers le sommet de la rampe; la force \vec{C} déplace le bloc latéralement; la force \vec{D} permet de pousser le bloc vers le haut de la rampe.

b. Pour être efficace, une force doit être dirigée dans le sens du mouvement.

Les forces \vec{B} et \vec{D} ont le même sens que celui du mouvement; ce sont les plus efficaces.

La force A, qui s'oppose au mouvement, est contreproductive; la force \vec{C} , perpendiculaire au mouvement, n'a pas d'effet sur celui-ci.

4 Le travail a la dimension d'une énergie.

Par analogie avec l'expression de l'énergie poten-

tielle de pesanteur, $\mathscr{E}_{pp} = m \cdot g \cdot h$. On en déduit que l'expression du travail doit être le produit de la valeur d'une force par une longueur. Le travail est donc homogène à des N·m.

Les relations a et d ne peuvent pas convenir; en effet,

l'analyse dimensionnelle conduit à :
a.
$$[W_{AB}] = \frac{N}{m} = N \cdot m^{-1}$$
 et **d.** $[W_{AB}] = \frac{m}{N} = m \cdot N^{-1}$.

L'analyse dimensionnelle des expressions b et c montre que ces deux relations sont homogènes à des

Le schéma du document fait apparaître que $\overrightarrow{F} \cdot \overrightarrow{AB} = F \cdot AB \cdot \cos \alpha$; la relation **c** convient.

